Nuprl Lemma : ispolyform_wf

[p:tree(ℤ)]. (ispolyform(p) ∈ ℤ ⟶ 𝔹)


Proof




Definitions occuring in Statement :  ispolyform: ispolyform(p) tree: tree(E) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ispolyform: ispolyform(p) subtype_rel: A ⊆B uimplies: supposing a top: Top so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q bfalse: ff prop: exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} nat: assert: b false: False so_apply: x[s1;s2;s3;s4]
Lemmas referenced :  tree_ind_wf_simple top_wf bool_wf tree_subtype btrue_wf subtract_wf eqtt_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base le_int_wf tree-height_wf nat_wf assert_of_le_int tree_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis functionEquality intEquality hypothesisEquality applyEquality independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality because_Cache functionExtensionality natural_numberEquality lambdaFormation unionElimination equalityElimination productElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination dependent_pairFormation promote_hyp instantiate cumulativity setElimination rename axiomEquality

Latex:
\mforall{}[p:tree(\mBbbZ{})].  (ispolyform(p)  \mmember{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbB{})



Date html generated: 2017_10_01-AM-08_32_14
Last ObjectModification: 2017_05_02-AM-11_40_53

Theory : integer!polynomial!trees


Home Index