Nuprl Lemma : tree-height_wf
∀[x:Type]. ∀[t:tree(x)].  (tree-height(t) ∈ ℕ)
Proof
Definitions occuring in Statement : 
tree-height: tree-height(t)
, 
tree: tree(E)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
tree-height: tree-height(t)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s1;s2;s3;s4]
Lemmas referenced : 
tree_ind_wf_simple, 
top_wf, 
nat_wf, 
tree_subtype, 
false_wf, 
le_wf, 
imax_wf, 
imax_nat, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
tree_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[x:Type].  \mforall{}[t:tree(x)].    (tree-height(t)  \mmember{}  \mBbbN{})
Date html generated:
2017_10_01-AM-08_30_42
Last ObjectModification:
2017_05_02-AM-10_59_05
Theory : tree_1
Home
Index