Nuprl Lemma : tree_node_wf

[E:Type]. ∀[left,right:tree(E)].  (tree_node(left;right) ∈ tree(E))


Proof




Definitions occuring in Statement :  tree_node: tree_node(left;right) tree: tree(E) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T tree: tree(E) tree_node: tree_node(left;right) eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt subtype_rel: A ⊆B ext-eq: A ≡ B and: P ∧ Q treeco_size: treeco_size(p) tree_size: tree_size(p) nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  treeco-ext treeco_wf ifthenelse_wf eq_atom_wf add_nat_wf false_wf le_wf tree_size_wf nat_wf value-type-has-value set-value-type int-value-type equal_wf has-value_wf-partial treeco_size_wf tree_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut dependent_set_memberEquality introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule dependent_pairEquality tokenEquality setElimination rename instantiate universeEquality productEquality voidEquality applyEquality productElimination natural_numberEquality independent_pairFormation lambdaFormation cumulativity independent_isectElimination intEquality lambdaEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination because_Cache

Latex:
\mforall{}[E:Type].  \mforall{}[left,right:tree(E)].    (tree\_node(left;right)  \mmember{}  tree(E))



Date html generated: 2017_10_01-AM-08_30_27
Last ObjectModification: 2017_07_26-PM-04_24_34

Theory : tree_1


Home Index