Nuprl Lemma : tree_size_wf

[E:Type]. ∀[p:tree(E)].  (tree_size(p) ∈ ℕ)


Proof




Definitions occuring in Statement :  tree_size: tree_size(p) tree: tree(E) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T tree_size: tree_size(p) treeco_size: treeco_size(p) tree: tree(E) uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  termination nat_wf set-value-type le_wf int-value-type treeco_size_wf tree_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesis independent_isectElimination intEquality lambdaEquality natural_numberEquality hypothesisEquality universeEquality

Latex:
\mforall{}[E:Type].  \mforall{}[p:tree(E)].    (tree\_size(p)  \mmember{}  \mBbbN{})



Date html generated: 2016_05_15-PM-01_49_29
Last ObjectModification: 2015_12_27-AM-00_12_34

Theory : tree_1


Home Index