Nuprl Lemma : tree_size_wf
∀[E:Type]. ∀[p:tree(E)].  (tree_size(p) ∈ ℕ)
Proof
Definitions occuring in Statement : 
tree_size: tree_size(p)
, 
tree: tree(E)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
tree_size: tree_size(p)
, 
treeco_size: treeco_size(p)
, 
tree: tree(E)
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
termination, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
treeco_size_wf, 
tree_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
independent_isectElimination, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
universeEquality
Latex:
\mforall{}[E:Type].  \mforall{}[p:tree(E)].    (tree\_size(p)  \mmember{}  \mBbbN{})
Date html generated:
2016_05_15-PM-01_49_29
Last ObjectModification:
2015_12_27-AM-00_12_34
Theory : tree_1
Home
Index