Step * 1 of Lemma dm-neg-is-hom


1. Type
2. eq EqDecider(T)
3. Point(free-DeMorgan-lattice(T;eq)) Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))
4. deq-fset(deq-fset(union-deq(T;T;eq;eq))) ∈ EqDecider(Point(opposite-lattice(free-DeMorgan-lattice(T;eq))))
5. ∀[f:(T T) ⟶ Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))]
     ac.lattice-extend(opposite-lattice(free-DeMorgan-lattice(T;eq));union-deq(T;T;eq;eq);
                         deq-fset(deq-fset(union-deq(T;T;eq;eq)));f;ac)
      ∈ Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));opposite-lattice(free-DeMorgan-lattice(T;eq))))
6. T@i
⊢ {{inr }} ∈ Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))
BY
(RevHypSubst 0
   THEN Unfold `free-DeMorgan-lattice` 0
   THEN (RWO "free-dl-point" THENA Auto)
   THEN (Assert inr x  ∈ BY
               Auto)
   THEN Auto) }


Latex:


Latex:

1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  Point(free-DeMorgan-lattice(T;eq))  \msim{}  Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))
4.  deq-fset(deq-fset(union-deq(T;T;eq;eq)))
      \mmember{}  EqDecider(Point(opposite-lattice(free-DeMorgan-lattice(T;eq))))
5.  \mforall{}[f:(T  +  T)  {}\mrightarrow{}  Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))]
          (\mlambda{}ac.lattice-extend(opposite-lattice(free-DeMorgan-lattice(T;eq));union-deq(T;T;eq;eq);
                                                  deq-fset(deq-fset(union-deq(T;T;eq;eq)));f;ac)
            \mmember{}  Hom(free-dist-lattice(T  +  T;  union-deq(T;T;eq;eq)
                                                            );opposite-lattice(free-DeMorgan-lattice(T;eq))))
6.  x  :  T@i
\mvdash{}  \{\{inr  x  \}\}  \mmember{}  Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))


By


Latex:
(RevHypSubst  3  0
  THEN  Unfold  `free-DeMorgan-lattice`  0
  THEN  (RWO  "free-dl-point"  0  THENA  Auto)
  THEN  (Assert  inr  x    \mmember{}  T  +  T  BY
                          Auto)
  THEN  Auto)




Home Index