Nuprl Lemma : dm-neg-is-hom
∀[T:Type]. ∀[eq:EqDecider(T)].
  (λx.¬(x) ∈ Hom(free-DeMorgan-lattice(T;eq);opposite-lattice(free-DeMorgan-lattice(T;eq))))
Proof
Definitions occuring in Statement : 
dm-neg: ¬(x)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
opposite-lattice: opposite-lattice(L)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dm-neg: ¬(x)
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
opposite-lattice: opposite-lattice(L)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bdd-distributive-lattice: BoundedDistributiveLattice
Lemmas referenced : 
free-dl-point, 
deq-fset_wf, 
fset_wf, 
union-deq_wf, 
strong-subtype-deq-subtype, 
assert_wf, 
fset-antichain_wf, 
strong-subtype-set2, 
lattice-extend-is-hom, 
opposite-lattice_wf, 
free-DeMorgan-lattice_wf, 
bounded-lattice-hom_wf, 
free-dist-lattice_wf, 
bdd-distributive-lattice_wf, 
deq_wf, 
fset-antichain-singleton, 
fset-singleton_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionEquality, 
hypothesisEquality, 
applyEquality, 
setEquality, 
independent_isectElimination, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
because_Cache, 
setElimination, 
rename, 
axiomEquality, 
universeEquality, 
inrEquality, 
dependent_set_memberEquality, 
inlEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].
    (\mlambda{}x.\mneg{}(x)  \mmember{}  Hom(free-DeMorgan-lattice(T;eq);opposite-lattice(free-DeMorgan-lattice(T;eq))))
Date html generated:
2020_05_20-AM-08_54_29
Last ObjectModification:
2015_12_28-PM-02_00_45
Theory : lattices
Home
Index