Step * of Lemma dma-lift-compose_wf

No Annotations
[I,J,K:Type]. ∀[eqi:EqDecider(I)]. ∀[eqj:EqDecider(J)]. ∀[f:J ⟶ Point(free-DeMorgan-algebra(I;eqi))].
[g:K ⟶ Point(free-DeMorgan-algebra(J;eqj))].
  (dma-lift-compose(I;J;eqi;eqj;f;g) ∈ K ⟶ Point(free-DeMorgan-algebra(I;eqi)))
BY
Auto }

1
1. Type
2. Type
3. Type
4. eqi EqDecider(I)
5. eqj EqDecider(J)
6. J ⟶ Point(free-DeMorgan-algebra(I;eqi))
7. K ⟶ Point(free-DeMorgan-algebra(J;eqj))
⊢ dma-lift-compose(I;J;eqi;eqj;f;g) ∈ K ⟶ Point(free-DeMorgan-algebra(I;eqi))


Latex:


Latex:
No  Annotations
\mforall{}[I,J,K:Type].  \mforall{}[eqi:EqDecider(I)].  \mforall{}[eqj:EqDecider(J)].
\mforall{}[f:J  {}\mrightarrow{}  Point(free-DeMorgan-algebra(I;eqi))].  \mforall{}[g:K  {}\mrightarrow{}  Point(free-DeMorgan-algebra(J;eqj))].
    (dma-lift-compose(I;J;eqi;eqj;f;g)  \mmember{}  K  {}\mrightarrow{}  Point(free-DeMorgan-algebra(I;eqi)))


By


Latex:
Auto




Home Index