Nuprl Lemma : dma-lift-compose_wf
∀[I,J,K:Type]. ∀[eqi:EqDecider(I)]. ∀[eqj:EqDecider(J)]. ∀[f:J ⟶ Point(free-DeMorgan-algebra(I;eqi))].
∀[g:K ⟶ Point(free-DeMorgan-algebra(J;eqj))].
  (dma-lift-compose(I;J;eqi;eqj;f;g) ∈ K ⟶ Point(free-DeMorgan-algebra(I;eqi)))
Proof
Definitions occuring in Statement : 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g)
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
bool: 𝔹
, 
btrue: tt
, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
bfalse: ff
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
record-update: r[x := v]
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
record-select: r.x
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
all: ∀x:A. B[x]
, 
dma-hom: dma-hom(dma1;dma2)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
Lemmas referenced : 
lattice-point_wf, 
free-DeMorgan-algebra_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
deq_wf, 
istype-universe, 
free-dml-deq_wf, 
free-dma-lift_wf, 
compose_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
thin, 
applyEquality, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
independent_isectElimination, 
cumulativity, 
inhabitedIsType, 
because_Cache, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeEquality, 
functionExtensionality, 
dependent_functionElimination, 
setElimination, 
rename, 
lambdaEquality
Latex:
\mforall{}[I,J,K:Type].  \mforall{}[eqi:EqDecider(I)].  \mforall{}[eqj:EqDecider(J)].
\mforall{}[f:J  {}\mrightarrow{}  Point(free-DeMorgan-algebra(I;eqi))].  \mforall{}[g:K  {}\mrightarrow{}  Point(free-DeMorgan-algebra(J;eqj))].
    (dma-lift-compose(I;J;eqi;eqj;f;g)  \mmember{}  K  {}\mrightarrow{}  Point(free-DeMorgan-algebra(I;eqi)))
Date html generated:
2020_05_20-AM-08_57_30
Last ObjectModification:
2018_11_08-PM-05_59_51
Theory : lattices
Home
Index