Step
*
2
of Lemma
face-lattice-property
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f0 : T ⟶ Point(L)
6. f1 : T ⟶ Point(L)
7. ∀x:T. (f0 x ∧ f1 x = 0 ∈ Point(L))
8. g : Hom(face-lattice(T;eq);L)
9. (λx.case x of inl(a) => f0 a | inr(b) => f1 b)
= (g o (λx.free-dlwc-inc(union-deq(T;T;eq;eq);a.face-lattice-constraints(a);x)))
∈ ((T + T) ⟶ Point(L))
10. x : T
⊢ (g (x=0)) = (f0 x) ∈ Point(L)
BY
{ ((ApFunToHypEquands `Z' ⌜Z (inl x)⌝ ⌜Point(L)⌝ (-2)⋅ THENA Auto)
THEN Reduce (-1)
THEN RWO "face-lattice0-is-inc<" (-1)
THEN Auto) }
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f0 : T {}\mrightarrow{} Point(L)
6. f1 : T {}\mrightarrow{} Point(L)
7. \mforall{}x:T. (f0 x \mwedge{} f1 x = 0)
8. g : Hom(face-lattice(T;eq);L)
9. (\mlambda{}x.case x of inl(a) => f0 a | inr(b) => f1 b)
= (g o (\mlambda{}x.free-dlwc-inc(union-deq(T;T;eq;eq);a.face-lattice-constraints(a);x)))
10. x : T
\mvdash{} (g (x=0)) = (f0 x)
By
Latex:
((ApFunToHypEquands `Z' \mkleeneopen{}Z (inl x)\mkleeneclose{} \mkleeneopen{}Point(L)\mkleeneclose{} (-2)\mcdot{} THENA Auto)
THEN Reduce (-1)
THEN RWO "face-lattice0-is-inc<" (-1)
THEN Auto)
Home
Index