Step * 1 of Lemma free-dist-lattice_wf


1. Type
2. eq EqDecider(T)
3. Order({ac:fset(fset(T))| ↑fset-antichain(eq;ac)} ;x,y.fset-ac-le(eq;x;y))
4. ∀[a,b:{ac:fset(fset(T))| ↑fset-antichain(eq;ac)} ].
     least-upper-bound({ac:fset(fset(T))| ↑fset-antichain(eq;ac)} ;x,y.fset-ac-le(eq;x;y);a;b;fset-ac-lub(eq;a;b))
5. ∀[a,b:{ac:fset(fset(T))| ↑fset-antichain(eq;ac)} ].
     greatest-lower-bound({ac:fset(fset(T))| ↑fset-antichain(eq;ac)} ;x,y.fset-ac-le(eq;x;y);a;b;fset-ac-glb(eq;a;b))
6. ∀[a:{ac:fset(fset(T))| ↑fset-antichain(eq;ac)} ]. fset-ac-le(eq;a;{{}})
7. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
⊢ fset-ac-le(eq;{};a)
BY
(RWO "empty-fset-ac-le" THEN Auto) }


Latex:


Latex:

1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  Order(\{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  ;x,y.fset-ac-le(eq;x;y))
4.  \mforall{}[a,b:\{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  ].
          least-upper-bound(\{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  ;x,y.fset-ac-le(eq;x;y);
                                              a;b;fset-ac-lub(eq;a;b))
5.  \mforall{}[a,b:\{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  ].
          greatest-lower-bound(\{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  ;x,y.fset-ac-le(eq;x;y);a;b;fse\000Ct-ac-glb(eq;a;b))
6.  \mforall{}[a:\{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  ].  fset-ac-le(eq;a;\{\{\}\})
7.  a  :  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\} 
\mvdash{}  fset-ac-le(eq;\{\};a)


By


Latex:
(RWO  "empty-fset-ac-le"  0  THEN  Auto)




Home Index