Step
*
1
of Lemma
free-dl-basis
1. T : Type
2. eq : EqDecider(T)
3. x : Point(free-dist-lattice(T; eq))
⊢ x = \/(λs./\(λx.free-dl-inc(x)"(s))"(x)) ∈ Point(free-dist-lattice(T; eq))
BY
{ Assert ⌜x = \/(λs.{s}"(x)) ∈ Point(free-dist-lattice(T; eq))⌝⋅ }
1
.....assertion..... 
1. T : Type
2. eq : EqDecider(T)
3. x : Point(free-dist-lattice(T; eq))
⊢ x = \/(λs.{s}"(x)) ∈ Point(free-dist-lattice(T; eq))
2
1. T : Type
2. eq : EqDecider(T)
3. x : Point(free-dist-lattice(T; eq))
4. x = \/(λs.{s}"(x)) ∈ Point(free-dist-lattice(T; eq))
⊢ x = \/(λs./\(λx.free-dl-inc(x)"(s))"(x)) ∈ Point(free-dist-lattice(T; eq))
Latex:
Latex:
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  x  :  Point(free-dist-lattice(T;  eq))
\mvdash{}  x  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))"(x))
By
Latex:
Assert  \mkleeneopen{}x  =  \mbackslash{}/(\mlambda{}s.\{s\}"(x))\mkleeneclose{}\mcdot{}
Home
Index