Step * 1 of Lemma free-dl-basis


1. Type
2. eq EqDecider(T)
3. Point(free-dist-lattice(T; eq))
⊢ \/(λs./\(λx.free-dl-inc(x)"(s))"(x)) ∈ Point(free-dist-lattice(T; eq))
BY
Assert ⌜\/(λs.{s}"(x)) ∈ Point(free-dist-lattice(T; eq))⌝⋅ }

1
.....assertion..... 
1. Type
2. eq EqDecider(T)
3. Point(free-dist-lattice(T; eq))
⊢ \/(λs.{s}"(x)) ∈ Point(free-dist-lattice(T; eq))

2
1. Type
2. eq EqDecider(T)
3. Point(free-dist-lattice(T; eq))
4. \/(λs.{s}"(x)) ∈ Point(free-dist-lattice(T; eq))
⊢ \/(λs./\(λx.free-dl-inc(x)"(s))"(x)) ∈ Point(free-dist-lattice(T; eq))


Latex:


Latex:

1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  x  :  Point(free-dist-lattice(T;  eq))
\mvdash{}  x  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))"(x))


By


Latex:
Assert  \mkleeneopen{}x  =  \mbackslash{}/(\mlambda{}s.\{s\}"(x))\mkleeneclose{}\mcdot{}




Home Index