Step
*
1
2
of Lemma
free-dl-basis
1. T : Type
2. eq : EqDecider(T)
3. x : Point(free-dist-lattice(T; eq))
4. x = \/(λs.{s}"(x)) ∈ Point(free-dist-lattice(T; eq))
⊢ x = \/(λs./\(λx.free-dl-inc(x)"(s))"(x)) ∈ Point(free-dist-lattice(T; eq))
BY
{ (NthHypEq (-1) THEN RepeatFor 2 ((EqCD THEN Auto))) }
1
.....subterm..... T:t
2:n
1. T : Type
2. eq : EqDecider(T)
3. x : Point(free-dist-lattice(T; eq))
4. x = \/(λs.{s}"(x)) ∈ Point(free-dist-lattice(T; eq))
⊢ λs./\(λx.free-dl-inc(x)"(s))"(x) = λs.{s}"(x) ∈ fset(Point(free-dist-lattice(T; eq)))
Latex:
Latex:
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  x  :  Point(free-dist-lattice(T;  eq))
4.  x  =  \mbackslash{}/(\mlambda{}s.\{s\}"(x))
\mvdash{}  x  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))"(x))
By
Latex:
(NthHypEq  (-1)  THEN  RepeatFor  2  ((EqCD  THEN  Auto)))
Home
Index