Step * 1 2 1 of Lemma free-dl-basis

.....subterm..... T:t
2:n
1. Type
2. eq EqDecider(T)
3. Point(free-dist-lattice(T; eq))
4. \/(λs.{s}"(x)) ∈ Point(free-dist-lattice(T; eq))
⊢ λs./\(λx.free-dl-inc(x)"(s))"(x) = λs.{s}"(x) ∈ fset(Point(free-dist-lattice(T; eq)))
BY
((Assert deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice(T; eq))) BY
          (RWO "free-dl-point" THEN Auto))
   THEN (Assert x ∈ fset(fset(T)) BY
               (RWO "free-dl-point" THEN Auto))
   }

1
1. Type
2. eq EqDecider(T)
3. Point(free-dist-lattice(T; eq))
4. \/(λs.{s}"(x)) ∈ Point(free-dist-lattice(T; eq))
5. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice(T; eq)))
6. x ∈ fset(fset(T))
⊢ λs./\(λx.free-dl-inc(x)"(s))"(x) = λs.{s}"(x) ∈ fset(Point(free-dist-lattice(T; eq)))


Latex:


Latex:
.....subterm.....  T:t
2:n
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  x  :  Point(free-dist-lattice(T;  eq))
4.  x  =  \mbackslash{}/(\mlambda{}s.\{s\}"(x))
\mvdash{}  \mlambda{}s./\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))"(x)  =  \mlambda{}s.\{s\}"(x)


By


Latex:
((Assert  deq-fset(deq-fset(eq))  \mmember{}  EqDecider(Point(free-dist-lattice(T;  eq)))  BY
                (RWO  "free-dl-point"  0  THEN  Auto))
  THEN  (Assert  x  \mmember{}  fset(fset(T))  BY
                          (RWO  "free-dl-point"  3  THEN  Auto))
  )




Home Index