Step * 1 1 of Lemma free-dl-le


1. [T] Type
2. eq EqDecider(T)@i
3. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} @i
4. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} @i
⊢ x ≤ ⇐⇒ fset-ac-le(eq;x;y)
BY
((RepUR ``lattice-le lattice-meet`` THEN (RWO "free-dl-point" THENA Auto))
   THEN RepUR ``free-dist-lattice mk-bounded-distributive-lattice`` 0
   THEN RepUR ``mk-bounded-lattice`` 0) }

1
1. [T] Type
2. eq EqDecider(T)@i
3. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} @i
4. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} @i
⊢ fset-ac-glb(eq;x;y) ∈ {ac:fset(fset(T))| ↑fset-antichain(eq;ac)}  ⇐⇒ fset-ac-le(eq;x;y)


Latex:


Latex:

1.  [T]  :  Type
2.  eq  :  EqDecider(T)@i
3.  x  :  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  @i
4.  y  :  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  @i
\mvdash{}  x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  fset-ac-le(eq;x;y)


By


Latex:
((RepUR  ``lattice-le  lattice-meet``  0  THEN  (RWO  "free-dl-point"  0  THENA  Auto))
  THEN  RepUR  ``free-dist-lattice  mk-bounded-distributive-lattice``  0
  THEN  RepUR  ``mk-bounded-lattice``  0)




Home Index