Nuprl Lemma : free-dl-le
∀[T:Type]. ∀eq:EqDecider(T). ∀x,y:Point(free-dist-lattice(T; eq)).  (x ≤ y ⇐⇒ fset-ac-le(eq;x;y))
Proof
Definitions occuring in Statement : 
free-dist-lattice: free-dist-lattice(T; eq), 
lattice-le: a ≤ b, 
lattice-point: Point(l), 
fset-ac-le: fset-ac-le(eq;ac1;ac2), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
uimplies: b supposing a, 
top: Top, 
lattice-le: a ≤ b, 
lattice-meet: a ∧ b, 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c), 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
squash: ↓T, 
true: True, 
guard: {T}, 
rev_implies: P ⇐ Q, 
fset-ac-le: fset-ac-le(eq;ac1;ac2), 
fset-all: fset-all(s;x.P[x]), 
order: Order(T;x,y.R[x; y]), 
refl: Refl(T;x,y.E[x; y]), 
anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced : 
fset-ac-order, 
fset-ac-glb_wf, 
f-subset_wf, 
iff_wf, 
all_wf, 
bool_wf, 
deq-f-subset_wf, 
bnot_wf, 
fset-filter_wf, 
fset-null_wf, 
assert_witness, 
iff_weakening_equal, 
fset-antichain_wf, 
assert_wf, 
fset_wf, 
true_wf, 
squash_wf, 
fset-ac-le_wf, 
fset-ac-glb-is-glb, 
rec_select_update_lemma, 
free-dl-point, 
deq_wf, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
free-dist-lattice_wf, 
lattice-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
because_Cache, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
universeEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairFormation, 
introduction, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
setEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
functionEquality
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}x,y:Point(free-dist-lattice(T;  eq)).    (x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  fset-ac-le(eq;x;y))
Date html generated:
2020_05_20-AM-08_45_17
Last ObjectModification:
2016_01_17-PM-00_40_14
Theory : lattices
Home
Index