Step * 1 1 of Lemma lattice-extend-join


1. Type
2. eq EqDecider(T)
3. BoundedDistributiveLattice
4. eqL EqDecider(Point(L))
5. T ⟶ Point(L)
6. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
7. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
⊢ lattice-extend'(L;eq;eqL;f;a ⋃ b) ≤ lattice-extend'(L;eq;eqL;f;a) ∨ lattice-extend'(L;eq;eqL;f;b)
BY
(Unfold `lattice-extend\'` 0
   THEN (RWO "fset-image-union" THENA Auto)
   THEN (RWO "lattice-fset-join-union" 0⋅ THENA Auto)
   THEN BLemma `lattice-le_weakening`
   THEN Auto) }


Latex:


Latex:

1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  L  :  BoundedDistributiveLattice
4.  eqL  :  EqDecider(Point(L))
5.  f  :  T  {}\mrightarrow{}  Point(L)
6.  a  :  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\} 
7.  b  :  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\} 
\mvdash{}  lattice-extend'(L;eq;eqL;f;a  \mcup{}  b)  \mleq{}  lattice-extend'(L;eq;eqL;f;a)  \mvee{}  lattice-extend'(L;eq;eqL;f;b)


By


Latex:
(Unfold  `lattice-extend\mbackslash{}'`  0
  THEN  (RWO  "fset-image-union"  0  THENA  Auto)
  THEN  (RWO  "lattice-fset-join-union"  0\mcdot{}  THENA  Auto)
  THEN  BLemma  `lattice-le\_weakening`
  THEN  Auto)




Home Index