Nuprl Lemma : lattice-extend-join

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))]. ∀[f:T ⟶ Point(L)].
[a,b:Point(free-dist-lattice(T; eq))].
  lattice-extend(L;eq;eqL;f;a ∨ b) ≤ lattice-extend(L;eq;eqL;f;a) ∨ lattice-extend(L;eq;eqL;f;b)


Proof




Definitions occuring in Statement :  lattice-extend: lattice-extend(L;eq;eqL;f;ac) free-dist-lattice: free-dist-lattice(T; eq) bdd-distributive-lattice: BoundedDistributiveLattice lattice-le: a ≤ b lattice-join: a ∨ b lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lattice-le: a ≤ b subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a top: Top lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-extend': lattice-extend'(L;eq;eqL;f;ac) squash: T implies:  Q bdd-lattice: BoundedLattice all: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q fset-ac-lub: fset-ac-lub(eq;ac1;ac2) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] f-subset: xs ⊆ ys uiff: uiff(P;Q)
Lemmas referenced :  lattice-point_wf free-dist-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf bdd-distributive-lattice_wf free-dl-join free-dl-point lattice-le_transitivity bdd-distributive-lattice-subtype-lattice lattice-extend'_wf fset-ac-lub_wf assert_wf fset-antichain_wf fset_wf fset-union_wf deq-fset_wf lattice-le_wf squash_wf true_wf lattice-fset-join_wf all_wf decidable_wf bdd-lattice_wf bdd-distributive-lattice-subtype-bdd-lattice fset-image-union lattice-fset-meet_wf decidable-equal-deq fset-image_wf iff_weakening_equal lattice-fset-join-union lattice-le_weakening lattice-fset-join_functionality_wrt_subset fset-minimals_wf f-proper-subset-dec_wf fset-image_functionality_wrt_subset member-fset-minimals fset-member_witness fset-member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution axiomEquality hypothesis extract_by_obid isectElimination thin cumulativity hypothesisEquality applyEquality instantiate lambdaEquality productEquality universeEquality because_Cache independent_isectElimination isect_memberEquality functionEquality voidElimination voidEquality functionExtensionality setElimination rename dependent_set_memberEquality setEquality imageElimination equalityTransitivity equalitySymmetry independent_functionElimination lambdaFormation dependent_functionElimination imageMemberEquality baseClosed natural_numberEquality productElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[eqL:EqDecider(Point(L))].
\mforall{}[f:T  {}\mrightarrow{}  Point(L)].  \mforall{}[a,b:Point(free-dist-lattice(T;  eq))].
    lattice-extend(L;eq;eqL;f;a  \mvee{}  b)  \mleq{}  lattice-extend(L;eq;eqL;f;a)  \mvee{}  lattice-extend(L;eq;eqL;f;b)



Date html generated: 2020_05_20-AM-08_45_54
Last ObjectModification: 2017_07_28-AM-09_14_38

Theory : lattices


Home Index