Nuprl Lemma : lattice-le_transitivity

[l:Lattice]. ∀[a,b,c:Point(l)].  (a ≤ c) supposing (a ≤ and b ≤ c)


Proof




Definitions occuring in Statement :  lattice-le: a ≤ b lattice: Lattice lattice-point: Point(l) uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a lattice-le: a ≤ b lattice: Lattice and: P ∧ Q guard: {T} prop: squash: T true: True
Lemmas referenced :  lattice_properties lattice-le_wf lattice-point_wf lattice_wf and_wf equal_wf lattice-meet_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality sqequalHypSubstitution extract_by_obid isectElimination thin hypothesis setElimination rename productElimination sqequalRule axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry hyp_replacement dependent_set_memberEquality independent_pairFormation applyEquality lambdaEquality setEquality imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[l:Lattice].  \mforall{}[a,b,c:Point(l)].    (a  \mleq{}  c)  supposing  (a  \mleq{}  b  and  b  \mleq{}  c)



Date html generated: 2020_05_20-AM-08_25_25
Last ObjectModification: 2017_07_28-AM-09_12_50

Theory : lattices


Home Index