Nuprl Lemma : lattice-le_wf

[l:LatticeStructure]. ∀[a,b:Point(l)].  (a ≤ b ∈ Type)


Proof




Definitions occuring in Statement :  lattice-le: a ≤ b lattice-point: Point(l) lattice-structure: LatticeStructure uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lattice-le: a ≤ b prop:
Lemmas referenced :  equal_wf lattice-point_wf lattice-meet_wf lattice-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[l:LatticeStructure].  \mforall{}[a,b:Point(l)].    (a  \mleq{}  b  \mmember{}  Type)



Date html generated: 2020_05_20-AM-08_23_46
Last ObjectModification: 2017_07_28-AM-09_12_32

Theory : lattices


Home Index