Nuprl Lemma : lattice-extend'_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))]. ∀[f:T ⟶ Point(L)].
∀[ac:fset(fset(T))].
  (lattice-extend'(L;eq;eqL;f;ac) ∈ Point(L))
Proof
Definitions occuring in Statement : 
lattice-extend': lattice-extend'(L;eq;eqL;f;ac)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lattice-extend': lattice-extend'(L;eq;eqL;f;ac)
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
lattice-fset-join_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
decidable-equal-deq, 
fset-image_wf, 
fset_wf, 
deq-fset_wf, 
lattice-fset-meet_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
deq_wf, 
bdd-distributive-lattice_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
dependent_functionElimination, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality, 
cumulativity, 
instantiate, 
productEquality, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[eqL:EqDecider(Point(L))].
\mforall{}[f:T  {}\mrightarrow{}  Point(L)].  \mforall{}[ac:fset(fset(T))].
    (lattice-extend'(L;eq;eqL;f;ac)  \mmember{}  Point(L))
Date html generated:
2020_05_20-AM-08_45_49
Last ObjectModification:
2015_12_28-PM-01_59_51
Theory : lattices
Home
Index