Nuprl Lemma : free-dl-join
∀[T,eq,a,b:Top].  (a ∨ b ~ fset-ac-lub(eq;a;b))
Proof
Definitions occuring in Statement : 
free-dist-lattice: free-dist-lattice(T; eq), 
lattice-join: a ∨ b, 
fset-ac-lub: fset-ac-lub(eq;ac1;ac2), 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
free-dist-lattice: free-dist-lattice(T; eq), 
lattice-join: a ∨ b, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
all: ∀x:A. B[x], 
top: Top, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt
Lemmas referenced : 
rec_select_update_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
axiomSqEquality, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[T,eq,a,b:Top].    (a  \mvee{}  b  \msim{}  fset-ac-lub(eq;a;b))
Date html generated:
2020_05_20-AM-08_45_14
Last ObjectModification:
2015_12_28-PM-01_59_58
Theory : lattices
Home
Index