Nuprl Lemma : lattice-le_weakening

[l:Lattice]. ∀[a,b:Point(l)].  a ≤ supposing b ∈ Point(l)


Proof




Definitions occuring in Statement :  lattice-le: a ≤ b lattice: Lattice lattice-point: Point(l) uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a lattice-le: a ≤ b squash: T prop: subtype_rel: A ⊆B lattice: Lattice true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf lattice-point_wf lattice_wf lattice-meet-idempotent iff_weakening_equal lattice-le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis thin hypothesisEquality equalitySymmetry applyEquality lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination equalityTransitivity universeEquality setElimination rename sqequalRule because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination hyp_replacement applyLambdaEquality axiomEquality isect_memberEquality

Latex:
\mforall{}[l:Lattice].  \mforall{}[a,b:Point(l)].    a  \mleq{}  b  supposing  a  =  b



Date html generated: 2020_05_20-AM-08_25_23
Last ObjectModification: 2017_07_28-AM-09_12_49

Theory : lattices


Home Index