Step * 1 2 1 of Lemma lattice-extend-join


1. Type
2. eq EqDecider(T)
3. BoundedDistributiveLattice
4. eqL EqDecider(Point(L))
5. T ⟶ Point(L)
6. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
7. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
8. fset(fset(T))@i
9. a ⋃ v ∈ fset(fset(T))
⊢ \/(λxs./\(f"(xs))"(fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys); v))) ≤ \/(λxs./\(f"(xs))"(v))
BY
(Using [`eq',⌜eqL⌝(BLemma `lattice-fset-join_functionality_wrt_subset`)⋅ THEN Auto) }

1
1. Type
2. eq EqDecider(T)
3. BoundedDistributiveLattice
4. eqL EqDecider(Point(L))
5. T ⟶ Point(L)
6. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
7. {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
8. fset(fset(T))@i
9. a ⋃ v ∈ fset(fset(T))
⊢ λxs./\(f"(xs))"(fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys); v)) ⊆ λxs./\(f"(xs))"(v)


Latex:


Latex:

1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  L  :  BoundedDistributiveLattice
4.  eqL  :  EqDecider(Point(L))
5.  f  :  T  {}\mrightarrow{}  Point(L)
6.  a  :  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\} 
7.  b  :  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\} 
8.  v  :  fset(fset(T))@i
9.  a  \mcup{}  b  =  v
\mvdash{}  \mbackslash{}/(\mlambda{}xs./\mbackslash{}(f"(xs))"(fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys);  v))) 
    \mleq{}  \mbackslash{}/(\mlambda{}xs./\mbackslash{}(f"(xs))"(v))


By


Latex:
(Using  [`eq',\mkleeneopen{}eqL\mkleeneclose{}]  (BLemma  `lattice-fset-join\_functionality\_wrt\_subset`)\mcdot{}  THEN  Auto)




Home Index