Step * of Lemma lattice-fset-join_functionality_wrt_subset2

No Annotations
[l:BoundedLattice]. ∀[eq:EqDecider(Point(l))]. ∀[s1,s2:fset(Point(l))].  \/(s1) ≤ \/(s2) supposing s1 ⊆ {0} ⋃ s2
BY
TACTIC:(Auto THEN Using [`b',⌜\/({0} ⋃ s2)⌝(BLemma `lattice-le_transitivity`)⋅ THEN Auto) }

1
1. BoundedLattice
2. eq EqDecider(Point(l))
3. s1 fset(Point(l))
4. s2 fset(Point(l))
5. s1 ⊆ {0} ⋃ s2
⊢ \/({0} ⋃ s2) ≤ \/(s2)

2
1. BoundedLattice
2. eq EqDecider(Point(l))
3. s1 fset(Point(l))
4. s2 fset(Point(l))
5. s1 ⊆ {0} ⋃ s2
⊢ \/(s1) ≤ \/({0} ⋃ s2)


Latex:


Latex:
No  Annotations
\mforall{}[l:BoundedLattice].  \mforall{}[eq:EqDecider(Point(l))].  \mforall{}[s1,s2:fset(Point(l))].
    \mbackslash{}/(s1)  \mleq{}  \mbackslash{}/(s2)  supposing  s1  \msubseteq{}  \{0\}  \mcup{}  s2


By


Latex:
TACTIC:(Auto  THEN  Using  [`b',\mkleeneopen{}\mbackslash{}/(\{0\}  \mcup{}  s2)\mkleeneclose{}]  (BLemma  `lattice-le\_transitivity`)\mcdot{}  THEN  Auto)




Home Index