Nuprl Lemma : lattice-fset-join_functionality_wrt_subset2
∀[l:BoundedLattice]. ∀[eq:EqDecider(Point(l))]. ∀[s1,s2:fset(Point(l))].  \/(s1) ≤ \/(s2) supposing s1 ⊆ {0} ⋃ s2
Proof
Definitions occuring in Statement : 
lattice-fset-join: \/(s)
, 
bdd-lattice: BoundedLattice
, 
lattice-0: 0
, 
lattice-le: a ≤ b
, 
lattice-point: Point(l)
, 
fset-singleton: {x}
, 
fset-union: x ⋃ y
, 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
lattice-le: a ≤ b
, 
prop: ℙ
, 
bdd-lattice: BoundedLattice
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
lattice-le_transitivity, 
bdd-lattice-subtype-lattice, 
lattice-fset-join_wf, 
decidable-equal-deq, 
f-subset_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
fset-union_wf, 
fset-singleton_wf, 
lattice-0_wf, 
fset_wf, 
deq_wf, 
bdd-lattice_wf, 
lattice-le_weakening, 
equal_wf, 
squash_wf, 
true_wf, 
lattice-fset-join-union, 
iff_weakening_equal, 
lattice-join-0, 
lattice-join_wf, 
lattice-fset-join-singleton, 
lattice-fset-join_functionality_wrt_subset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
dependent_functionElimination, 
independent_isectElimination, 
axiomEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
setElimination, 
rename, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination
Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[eq:EqDecider(Point(l))].  \mforall{}[s1,s2:fset(Point(l))].
    \mbackslash{}/(s1)  \mleq{}  \mbackslash{}/(s2)  supposing  s1  \msubseteq{}  \{0\}  \mcup{}  s2
Date html generated:
2020_05_20-AM-08_44_00
Last ObjectModification:
2017_07_28-AM-09_13_58
Theory : lattices
Home
Index