Nuprl Lemma : lattice-fset-join_functionality_wrt_subset2

[l:BoundedLattice]. ∀[eq:EqDecider(Point(l))]. ∀[s1,s2:fset(Point(l))].  \/(s1) ≤ \/(s2) supposing s1 ⊆ {0} ⋃ s2


Proof




Definitions occuring in Statement :  lattice-fset-join: \/(s) bdd-lattice: BoundedLattice lattice-0: 0 lattice-le: a ≤ b lattice-point: Point(l) fset-singleton: {x} fset-union: x ⋃ y f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B implies:  Q all: x:A. B[x] lattice-le: a ≤ b prop: bdd-lattice: BoundedLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  lattice-le_transitivity bdd-lattice-subtype-lattice lattice-fset-join_wf decidable-equal-deq f-subset_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf fset-union_wf fset-singleton_wf lattice-0_wf fset_wf deq_wf bdd-lattice_wf lattice-le_weakening equal_wf squash_wf true_wf lattice-fset-join-union iff_weakening_equal lattice-join-0 lattice-join_wf lattice-fset-join-singleton lattice-fset-join_functionality_wrt_subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule independent_functionElimination lambdaFormation because_Cache dependent_functionElimination independent_isectElimination axiomEquality instantiate lambdaEquality productEquality cumulativity setElimination rename isect_memberEquality equalityTransitivity equalitySymmetry imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination

Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[eq:EqDecider(Point(l))].  \mforall{}[s1,s2:fset(Point(l))].
    \mbackslash{}/(s1)  \mleq{}  \mbackslash{}/(s2)  supposing  s1  \msubseteq{}  \{0\}  \mcup{}  s2



Date html generated: 2020_05_20-AM-08_44_00
Last ObjectModification: 2017_07_28-AM-09_13_58

Theory : lattices


Home Index