Step
*
of Lemma
agree_on_equiv
∀[T:Type]. ∀[P:T ⟶ ℙ]. EquivRel(T List)(_1 agree_on(T;a.P[a]) _2)
BY
{ (Auto THEN D 0 THEN RepUR ``refl sym trans agree_on`` 0 THEN Auto) }
1
1. T : Type
2. P : T ⟶ ℙ
3. a : T List
4. b : T List
5. (||a|| = ||b|| ∈ ℤ) c∧ (∀i:ℕ||a||. ((P[a[i]] ∨ P[b[i]])
⇒ (a[i] = b[i] ∈ T)))
6. ||b|| = ||a|| ∈ ℤ
7. i : ℕ||b||
8. P[b[i]] ∨ P[a[i]]
⊢ b[i] = a[i] ∈ T
2
1. T : Type
2. P : T ⟶ ℙ
3. ∀a,b:T List.
(((||a|| = ||b|| ∈ ℤ) c∧ (∀i:ℕ||a||. ((P[a[i]] ∨ P[b[i]])
⇒ (a[i] = b[i] ∈ T))))
⇒ ((||b|| = ||a|| ∈ ℤ) c∧ (∀i:ℕ||b||. ((P[b[i]] ∨ P[a[i]])
⇒ (b[i] = a[i] ∈ T)))))
4. a : T List
5. b : T List
6. c : T List
7. (||a|| = ||b|| ∈ ℤ) c∧ (∀i:ℕ||a||. ((P[a[i]] ∨ P[b[i]])
⇒ (a[i] = b[i] ∈ T)))
8. (||b|| = ||c|| ∈ ℤ) c∧ (∀i:ℕ||b||. ((P[b[i]] ∨ P[c[i]])
⇒ (b[i] = c[i] ∈ T)))
9. ||a|| = ||c|| ∈ ℤ
10. i : ℕ||a||
11. P[a[i]] ∨ P[c[i]]
⊢ a[i] = c[i] ∈ T
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[P:T {}\mrightarrow{} \mBbbP{}]. EquivRel(T List)($_{1}$ agree\_on(T;a.P[a]) $_\mbackslash{}f\000Cf7b2}$)
By
Latex:
(Auto THEN D 0 THEN RepUR ``refl sym trans agree\_on`` 0 THEN Auto)
Home
Index