Nuprl Lemma : agree_on_equiv
∀[T:Type]. ∀[P:T ⟶ ℙ].  EquivRel(T List)(_1 agree_on(T;a.P[a]) _2)
Proof
Definitions occuring in Statement : 
agree_on: agree_on(T;x.P[x])
, 
list: T List
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
agree_on: agree_on(T;x.P[x])
, 
refl: Refl(T;x,y.E[x; y])
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
trans: Trans(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
so_lambda: λ2x.t[x]
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
length_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
or_wf, 
int_seg_wf, 
list_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal_wf, 
all_wf, 
lelt_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
sqequalRule, 
lambdaFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
applyEquality, 
functionExtensionality, 
independent_pairEquality, 
axiomEquality, 
addLevel, 
levelHypothesis, 
productEquality, 
functionEquality, 
universeEquality, 
dependent_set_memberEquality, 
independent_functionElimination, 
inrFormation, 
inlFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    EquivRel(T  List)($_{1}$  agree\_on(T;a.P[a])  $_\mbackslash{}f\000Cf7b2}$)
Date html generated:
2017_10_01-AM-08_38_59
Last ObjectModification:
2017_07_26-PM-04_27_20
Theory : list!
Home
Index