Step
*
of Lemma
occurence_implies_interleaving
∀[T:Type]
  ∀L1,L2,L:T List. ∀f1:ℕ||L1|| ⟶ ℕ||L||. ∀f2:ℕ||L2|| ⟶ ℕ||L||.
    interleaving(T;L1;L2;L) supposing interleaving_occurence(T;L1;L2;L;f1;f2)
BY
{ (Unfolds ``interleaving_occurence interleaving`` 0 THEN Auto') }
1
1. [T] : Type
2. L1 : T List
3. L2 : T List
4. L : T List
5. f1 : ℕ||L1|| ⟶ ℕ||L||
6. f2 : ℕ||L2|| ⟶ ℕ||L||
7. ||L|| = (||L1|| + ||L2||) ∈ ℕ
8. increasing(f1;||L1||)
9. ∀j:ℕ||L1||. (L1[j] = L[f1 j] ∈ T)
10. increasing(f2;||L2||)
11. ∀j:ℕ||L2||. (L2[j] = L[f2 j] ∈ T)
12. ∀j1:ℕ||L1||. ∀j2:ℕ||L2||.  (¬((f1 j1) = (f2 j2) ∈ ℤ))
13. ||L|| = (||L1|| + ||L2||) ∈ ℕ
⊢ disjoint_sublists(T;L1;L2;L)
Latex:
Latex:
\mforall{}[T:Type]
    \mforall{}L1,L2,L:T  List.  \mforall{}f1:\mBbbN{}||L1||  {}\mrightarrow{}  \mBbbN{}||L||.  \mforall{}f2:\mBbbN{}||L2||  {}\mrightarrow{}  \mBbbN{}||L||.
        interleaving(T;L1;L2;L)  supposing  interleaving\_occurence(T;L1;L2;L;f1;f2)
By
Latex:
(Unfolds  ``interleaving\_occurence  interleaving``  0  THEN  Auto')
Home
Index