Step
*
2
2
1
of Lemma
split_tail_trivial
.....falsecase.....
1. A : Type
2. f : A ⟶ 𝔹
3. u : A
4. v : A List
5. ∀b:A. ((b ∈ [u / v])
⇒ (↑f[b]))
6. split_tail(v | ∀x.f[x]) = <[], v> ∈ (A List × (A List))
7. ¬↑f[u]
⊢ <[u], v> = <[], [u / v]> ∈ (A List × (A List))
BY
{ ((D (-1) THEN BackThruSomeHyp) THENA Auto) }
1
1. A : Type
2. f : A ⟶ 𝔹
3. u : A
4. v : A List
5. ∀b:A. ((b ∈ [u / v])
⇒ (↑f[b]))
6. split_tail(v | ∀x.f[x]) = <[], v> ∈ (A List × (A List))
⊢ (u ∈ [u / v])
Latex:
Latex:
.....falsecase.....
1. A : Type
2. f : A {}\mrightarrow{} \mBbbB{}
3. u : A
4. v : A List
5. \mforall{}b:A. ((b \mmember{} [u / v]) {}\mRightarrow{} (\muparrow{}f[b]))
6. split\_tail(v | \mforall{}x.f[x]) = <[], v>
7. \mneg{}\muparrow{}f[u]
\mvdash{} <[u], v> = <[], [u / v]>
By
Latex:
((D (-1) THEN BackThruSomeHyp) THENA Auto)
Home
Index