Nuprl Lemma : split_tail_trivial
∀[A:Type]. ∀[f:A ⟶ 𝔹]. ∀[L:A List].
  split_tail(L | ∀x.f[x]) = <[], L> ∈ (A List × (A List)) supposing ∀b:A. ((b ∈ L) ⇒ (↑f[b]))
Proof
Definitions occuring in Statement : 
split_tail: split_tail(L | ∀x.f[x]), 
l_member: (x ∈ l), 
nil: [], 
list: T List, 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
pair: <a, b>, 
product: x:A × B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
split_tail: split_tail(L | ∀x.f[x]), 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
guard: {T}, 
or: P ∨ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
not: ¬A, 
false: False
Lemmas referenced : 
list_induction, 
isect_wf, 
all_wf, 
l_member_wf, 
assert_wf, 
equal_wf, 
list_wf, 
split_tail_wf, 
nil_wf, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
bool_wf, 
cons_wf, 
cons_member, 
equal-wf-T-base, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
list_ind_wf, 
ifthenelse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
hypothesis, 
applyEquality, 
productEquality, 
independent_pairEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
rename, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
functionIsType, 
universeEquality, 
independent_isectElimination, 
inhabitedIsType, 
lambdaFormation_alt, 
productElimination, 
inrFormation, 
baseClosed, 
unionElimination, 
equalityElimination, 
hyp_replacement, 
applyLambdaEquality, 
spreadEquality, 
inlFormation
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:A  List].
    split\_tail(L  |  \mforall{}x.f[x])  =  <[],  L>  supposing  \mforall{}b:A.  ((b  \mmember{}  L)  {}\mRightarrow{}  (\muparrow{}f[b]))
Date html generated:
2019_10_15-AM-10_54_41
Last ObjectModification:
2018_09_27-AM-10_18_53
Theory : list!
Home
Index