Step
*
1
1
of Lemma
det-id
.....assertion.....
1. r : CRng
2. n : ℕ
3. eq : EqDecider(ℕn ⟶ ℕn)
⊢ Σ{r} f ∈ permutations-list(n). if eq f (λx.x) then 1 else 0 fi = 1 ∈ |r|
BY
{ (InstLemma `rng_lsum-split` [⌜ℕn ⟶ ℕn⌝;⌜eq (λx.x)⌝]⋅ THENA Auto) }
1
1. r : CRng
2. n : ℕ
3. eq : EqDecider(ℕn ⟶ ℕn)
4. ∀[r:Rng]. ∀[f:(ℕn ⟶ ℕn) ⟶ |r|]. ∀[as:(ℕn ⟶ ℕn) List].
(Σ{r} x ∈ as. f[x] = (Σ{r} x ∈ filter(eq (λx.x);as). f[x] +r Σ{r} x ∈ filter(λa.(¬b(eq (λx.x) a));as). f[x]) ∈ |r|)
⊢ Σ{r} f ∈ permutations-list(n). if eq f (λx.x) then 1 else 0 fi = 1 ∈ |r|
Latex:
Latex:
.....assertion.....
1. r : CRng
2. n : \mBbbN{}
3. eq : EqDecider(\mBbbN{}n {}\mrightarrow{} \mBbbN{}n)
\mvdash{} \mSigma{}\{r\} f \mmember{} permutations-list(n). if eq f (\mlambda{}x.x) then 1 else 0 fi = 1
By
Latex:
(InstLemma `rng\_lsum-split` [\mkleeneopen{}\mBbbN{}n {}\mrightarrow{} \mBbbN{}n\mkleeneclose{};\mkleeneopen{}eq (\mlambda{}x.x)\mkleeneclose{}]\mcdot{} THENA Auto)
Home
Index