Nuprl Lemma : det-id

[r:CRng]. ∀[n:ℕ].  (|I| 1 ∈ |r|)


Proof




Definitions occuring in Statement :  matrix-det: |M| identity-matrix: I nat: uall: [x:A]. B[x] equal: t ∈ T crng: CRng rng_one: 1 rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T all: x:A. B[x] implies:  Q iff: ⇐⇒ Q rev_implies:  Q deq: EqDecider(T) prop: crng: CRng rng: Rng so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a injection: A →⟶ B true: True guard: {T} infix_ap: y istype: istype(T) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) eqof: eqof(d) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A sq_stable: SqStable(P) l_member: (x ∈ l) cand: c∧ B ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top rev_uimplies: rev_uimplies(P;Q) l_all: (∀x∈L.P[x]) matrix-det: |M| identity-matrix: I matrix-ap: M[i,j] mx: matrix(M[x; y]) let: let nequal: a ≠ b ∈  rng_prod: rng_prod rng_car: |r| pi1: fst(t) grp_car: |g| mul_mon_of_rng: r↓xmn grp_op: * pi2: snd(t)
Lemmas referenced :  deq-exists int_seg_wf decidable__equal_compact_domain decidable__equal_int_seg compact-finite istype-nat crng_wf rng_lsum-split equal_wf squash_wf true_wf istype-universe rng_car_wf ifthenelse_wf rng_one_wf rng_zero_wf permutations-list_wf subtype_rel_set list_wf injection_wf no_repeats_wf l_member_wf subtype_rel_list subtype_rel_self iff_weakening_equal rng_plus_wf rng_lsum_wf filter_wf5 subtype_rel_dep_function bool_wf filter_type bnot_wf rng_wf assert_wf istype-assert eqtt_to_assert safe-assert-deq eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot iff_weakening_uiff equal-wf-T-base eqof_wf not_wf equal-wf-base-T istype-void iff_transitivity assert_of_bnot rng_lsum_0 filter_is_singleton no_repeats-l_member! sq_stable__no_repeats no_repeats-strong-subtype strong-subtype-set3 inject_wf strong-subtype-self sq_stable__and sq_stable__all sq_stable__l_member decidable__equal_injection identity-injection respects-equality-set-trivial2 change-equality-type istype-less_than length_wf select_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf int_seg_properties decidable__lt istype-le intformless_wf int_formula_prop_less_lemma strong-subtype-deq-subtype rng_lsum_cons_lemma rng_lsum_nil_lemma equal-wf-base rng_plus_assoc rng_plus_zero assert-deq rng_minus_wf rng_prod_wf let_wf permutation-sign_wf int_subtype_base rng_prod_1 permutation-sign-id eq_int_wf assert_of_eq_int neg_assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma decidable__exists_int_seg set_subtype_base lelt_wf decidable__not decidable__equal_int mon_itop_split_el mul_mon_of_rng_wf_c grp_car_wf mul_mon_of_rng_wf rng_times_wf itermAdd_wf int_term_value_add_lemma rng_times_zero rng_minus_zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality natural_numberEquality setElimination rename hypothesisEquality hypothesis productElimination imageElimination lambdaFormation_alt because_Cache independent_functionElimination dependent_functionElimination inhabitedIsType universeIsType functionIsType sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies applyEquality lambdaEquality_alt equalityTransitivity equalitySymmetry instantiate universeEquality productEquality independent_isectElimination imageMemberEquality baseClosed hyp_replacement applyLambdaEquality setEquality setIsType unionElimination equalityElimination dependent_pairFormation_alt equalityIstype promote_hyp cumulativity voidElimination independent_pairFormation dependent_set_memberEquality_alt productIsType closedConclusion approximateComputation int_eqEquality sqequalBase int_eqReduceTrueSq functionExtensionality baseApply intEquality int_eqReduceFalseSq addEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].    (|I|  =  1)



Date html generated: 2019_10_16-AM-11_27_22
Last ObjectModification: 2019_06_25-PM-03_26_38

Theory : matrices


Home Index