Nuprl Lemma : det-id
∀[r:CRng]. ∀[n:ℕ].  (|I| = 1 ∈ |r|)
Proof
Definitions occuring in Statement : 
matrix-det: |M|, 
identity-matrix: I, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T, 
crng: CRng, 
rng_one: 1, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
deq: EqDecider(T), 
prop: ℙ, 
crng: CRng, 
rng: Rng, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
injection: A →⟶ B, 
true: True, 
guard: {T}, 
infix_ap: x f y, 
istype: istype(T), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
eqof: eqof(d), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
sq_stable: SqStable(P), 
l_member: (x ∈ l), 
cand: A c∧ B, 
ge: i ≥ j , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
rev_uimplies: rev_uimplies(P;Q), 
l_all: (∀x∈L.P[x]), 
matrix-det: |M|, 
identity-matrix: I, 
matrix-ap: M[i,j], 
mx: matrix(M[x; y]), 
let: let, 
nequal: a ≠ b ∈ T , 
rng_prod: rng_prod, 
rng_car: |r|, 
pi1: fst(t), 
grp_car: |g|, 
mul_mon_of_rng: r↓xmn, 
grp_op: *, 
pi2: snd(t)
Lemmas referenced : 
deq-exists, 
int_seg_wf, 
decidable__equal_compact_domain, 
decidable__equal_int_seg, 
compact-finite, 
istype-nat, 
crng_wf, 
rng_lsum-split, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
rng_car_wf, 
ifthenelse_wf, 
rng_one_wf, 
rng_zero_wf, 
permutations-list_wf, 
subtype_rel_set, 
list_wf, 
injection_wf, 
no_repeats_wf, 
l_member_wf, 
subtype_rel_list, 
subtype_rel_self, 
iff_weakening_equal, 
rng_plus_wf, 
rng_lsum_wf, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
filter_type, 
bnot_wf, 
rng_wf, 
assert_wf, 
istype-assert, 
eqtt_to_assert, 
safe-assert-deq, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
equal-wf-T-base, 
eqof_wf, 
not_wf, 
equal-wf-base-T, 
istype-void, 
iff_transitivity, 
assert_of_bnot, 
rng_lsum_0, 
filter_is_singleton, 
no_repeats-l_member!, 
sq_stable__no_repeats, 
no_repeats-strong-subtype, 
strong-subtype-set3, 
inject_wf, 
strong-subtype-self, 
sq_stable__and, 
sq_stable__all, 
sq_stable__l_member, 
decidable__equal_injection, 
identity-injection, 
respects-equality-set-trivial2, 
change-equality-type, 
istype-less_than, 
length_wf, 
select_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
int_seg_properties, 
decidable__lt, 
istype-le, 
intformless_wf, 
int_formula_prop_less_lemma, 
strong-subtype-deq-subtype, 
rng_lsum_cons_lemma, 
rng_lsum_nil_lemma, 
equal-wf-base, 
rng_plus_assoc, 
rng_plus_zero, 
assert-deq, 
rng_minus_wf, 
rng_prod_wf, 
let_wf, 
permutation-sign_wf, 
int_subtype_base, 
rng_prod_1, 
permutation-sign-id, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__exists_int_seg, 
set_subtype_base, 
lelt_wf, 
decidable__not, 
decidable__equal_int, 
mon_itop_split_el, 
mul_mon_of_rng_wf_c, 
grp_car_wf, 
mul_mon_of_rng_wf, 
rng_times_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
rng_times_zero, 
rng_minus_zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
imageElimination, 
lambdaFormation_alt, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination, 
inhabitedIsType, 
universeIsType, 
functionIsType, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
applyEquality, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality, 
productEquality, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality, 
setEquality, 
setIsType, 
unionElimination, 
equalityElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
cumulativity, 
voidElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
productIsType, 
closedConclusion, 
approximateComputation, 
int_eqEquality, 
sqequalBase, 
int_eqReduceTrueSq, 
functionExtensionality, 
baseApply, 
intEquality, 
int_eqReduceFalseSq, 
addEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].    (|I|  =  1)
Date html generated:
2019_10_16-AM-11_27_22
Last ObjectModification:
2019_06_25-PM-03_26_38
Theory : matrices
Home
Index