Nuprl Lemma : rng_prod_1

[r:CRng]. ∀[n:ℕ].  ((Π(r) 0 ≤ i < n. 1) 1 ∈ |r|)


Proof




Definitions occuring in Statement :  nat: uall: [x:A]. B[x] natural_number: $n equal: t ∈ T rng_prod: rng_prod crng: CRng rng_one: 1 rng_car: |r|
Definitions unfolded in proof :  or: P ∨ Q decidable: Dec(P) prop: and: P ∧ Q top: Top all: x:A. B[x] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x] rng: Rng crng: CRng so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B true: True nat_plus: + squash: T infix_ap: y
Lemmas referenced :  crng_wf nat_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties rng_one_wf rng_prod_unroll_base rng_times_one rng_times_wf iff_weakening_equal int_seg_wf rng_prod_unroll_hi rng_car_wf true_wf squash_wf equal_wf
Rules used in proof :  unionElimination axiomEquality independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution because_Cache productElimination baseClosed imageMemberEquality dependent_set_memberEquality universeEquality equalitySymmetry equalityTransitivity imageElimination applyEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].    ((\mPi{}(r)  0  \mleq{}  i  <  n.  1)  =  1)



Date html generated: 2018_05_21-PM-09_33_25
Last ObjectModification: 2017_12_14-PM-07_06_09

Theory : matrices


Home Index