Nuprl Lemma : rng_prod_unroll_hi
∀[r:CRng]. ∀[n:ℕ+]. ∀[F:ℕn ⟶ |r|].  ((Π(r) 0 ≤ i < n. F[i]) = ((Π(r) 0 ≤ i < n - 1. F[i]) * F[n - 1]) ∈ |r|)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
so_apply: x[s], 
function: x:A ⟶ B[x], 
subtract: n - m, 
natural_number: $n, 
equal: s = t ∈ T, 
rng_prod: rng_prod, 
crng: CRng, 
rng_times: *, 
rng_car: |r|
Definitions unfolded in proof : 
rng: Rng, 
crng: CRng, 
nat_plus: ℕ+, 
guard: {T}, 
implies: P ⇒ Q, 
sq_type: SQType(T), 
uimplies: b supposing a, 
or: P ∨ Q, 
decidable: Dec(P), 
member: t ∈ T, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
top: Top, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
prop: ℙ, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
and: P ∧ Q, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
so_apply: x[s], 
bfalse: ff, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
ycomb: Y, 
itop: Π(op,id) lb ≤ i < ub. E[i], 
grp_id: e, 
pi1: fst(t), 
pi2: snd(t), 
grp_op: *, 
mul_mon_of_rng: r↓xmn, 
mon_itop: Π lb ≤ i < ub. E[i], 
subtract: n - m, 
rng_prod: rng_prod, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
true: True, 
grp_car: |g|, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
squash: ↓T
Lemmas referenced : 
crng_wf, 
nat_plus_wf, 
rng_car_wf, 
int_seg_wf, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
lelt_wf, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_plus_properties, 
false_wf, 
rng_one_wf, 
rng_times_wf, 
infix_ap_wf, 
iff_weakening_equal, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
rng_prod_wf, 
mul_mon_of_rng_wf_c, 
mon_itop_unroll_hi, 
true_wf, 
squash_wf, 
equal_wf
Rules used in proof : 
hypothesisEquality, 
rename, 
setElimination, 
functionEquality, 
independent_functionElimination, 
independent_isectElimination, 
intEquality, 
cumulativity, 
isectElimination, 
instantiate, 
unionElimination, 
hypothesis, 
natural_numberEquality, 
because_Cache, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
approximateComputation, 
lambdaFormation, 
independent_pairFormation, 
dependent_set_memberEquality, 
functionExtensionality, 
applyEquality, 
sqequalRule, 
baseClosed, 
imageMemberEquality, 
productElimination, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination
Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[F:\mBbbN{}n  {}\mrightarrow{}  |r|].
    ((\mPi{}(r)  0  \mleq{}  i  <  n.  F[i])  =  ((\mPi{}(r)  0  \mleq{}  i  <  n  -  1.  F[i])  *  F[n  -  1]))
Date html generated:
2018_05_21-PM-09_33_22
Last ObjectModification:
2017_12_14-PM-07_02_32
Theory : matrices
Home
Index