Nuprl Lemma : rng_prod_unroll_hi

[r:CRng]. ∀[n:ℕ+]. ∀[F:ℕn ⟶ |r|].  ((Π(r) 0 ≤ i < n. F[i]) ((Π(r) 0 ≤ i < 1. F[i]) F[n 1]) ∈ |r|)


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] infix_ap: y so_apply: x[s] function: x:A ⟶ B[x] subtract: m natural_number: $n equal: t ∈ T rng_prod: rng_prod crng: CRng rng_times: * rng_car: |r|
Definitions unfolded in proof :  rng: Rng crng: CRng nat_plus: + guard: {T} implies:  Q sq_type: SQType(T) uimplies: supposing a or: P ∨ Q decidable: Dec(P) member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) prop: not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} so_apply: x[s] bfalse: ff btrue: tt ifthenelse: if then else fi  lt_int: i <j ycomb: Y itop: Π(op,id) lb ≤ i < ub. E[i] grp_id: e pi1: fst(t) pi2: snd(t) grp_op: * mul_mon_of_rng: r↓xmn mon_itop: Π lb ≤ i < ub. E[i] subtract: m rng_prod: rng_prod rev_implies:  Q iff: ⇐⇒ Q true: True grp_car: |g| subtype_rel: A ⊆B so_lambda: λ2x.t[x] squash: T
Lemmas referenced :  crng_wf nat_plus_wf rng_car_wf int_seg_wf int_subtype_base subtype_base_sq decidable__equal_int lelt_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_plus_properties false_wf rng_one_wf rng_times_wf infix_ap_wf iff_weakening_equal int_formula_prop_le_lemma intformle_wf decidable__le int_term_value_subtract_lemma itermSubtract_wf subtract_wf rng_prod_wf mul_mon_of_rng_wf_c mon_itop_unroll_hi true_wf squash_wf equal_wf
Rules used in proof :  hypothesisEquality rename setElimination functionEquality independent_functionElimination independent_isectElimination intEquality cumulativity isectElimination instantiate unionElimination hypothesis natural_numberEquality because_Cache thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution voidEquality voidElimination isect_memberEquality int_eqEquality lambdaEquality dependent_pairFormation approximateComputation lambdaFormation independent_pairFormation dependent_set_memberEquality functionExtensionality applyEquality sqequalRule baseClosed imageMemberEquality productElimination universeEquality equalitySymmetry equalityTransitivity imageElimination

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[F:\mBbbN{}n  {}\mrightarrow{}  |r|].
    ((\mPi{}(r)  0  \mleq{}  i  <  n.  F[i])  =  ((\mPi{}(r)  0  \mleq{}  i  <  n  -  1.  F[i])  *  F[n  -  1]))



Date html generated: 2018_05_21-PM-09_33_22
Last ObjectModification: 2017_12_14-PM-07_02_32

Theory : matrices


Home Index