Nuprl Lemma : rng_prod_unroll_base
∀[r,F:Top].  (Π(r) 0 ≤ i < 0. F[i] ~ 1)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
natural_number: $n
, 
sqequal: s ~ t
, 
rng_prod: rng_prod, 
rng_one: 1
Definitions unfolded in proof : 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
subtract: n - m
, 
lt_int: i <z j
, 
ycomb: Y
, 
itop: Π(op,id) lb ≤ i < ub. E[i]
, 
grp_id: e
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
grp_op: *
, 
mul_mon_of_rng: r↓xmn
, 
mon_itop: Π lb ≤ i < ub. E[i]
, 
rng_prod: rng_prod, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf
Rules used in proof : 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
isect_memberEquality, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalAxiom, 
hypothesis, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r,F:Top].    (\mPi{}(r)  0  \mleq{}  i  <  0.  F[i]  \msim{}  1)
Date html generated:
2018_05_21-PM-09_33_19
Last ObjectModification:
2017_12_14-PM-07_05_40
Theory : matrices
Home
Index