Nuprl Lemma : rng_prod_unroll_base

[r,F:Top].  (r) 0 ≤ i < 0. F[i] 1)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top so_apply: x[s] natural_number: $n sqequal: t rng_prod: rng_prod rng_one: 1
Definitions unfolded in proof :  bfalse: ff ifthenelse: if then else fi  subtract: m lt_int: i <j ycomb: Y itop: Π(op,id) lb ≤ i < ub. E[i] grp_id: e pi1: fst(t) pi2: snd(t) grp_op: * mul_mon_of_rng: r↓xmn mon_itop: Π lb ≤ i < ub. E[i] rng_prod: rng_prod member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  top_wf
Rules used in proof :  because_Cache hypothesisEquality thin isectElimination isect_memberEquality sqequalHypSubstitution extract_by_obid sqequalAxiom hypothesis sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r,F:Top].    (\mPi{}(r)  0  \mleq{}  i  <  0.  F[i]  \msim{}  1)



Date html generated: 2018_05_21-PM-09_33_19
Last ObjectModification: 2017_12_14-PM-07_05_40

Theory : matrices


Home Index