Nuprl Lemma : rng_prod_unroll_base
∀[r,F:Top]. (Π(r) 0 ≤ i < 0. F[i] ~ 1)
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s]
,
natural_number: $n
,
sqequal: s ~ t
,
rng_prod: rng_prod,
rng_one: 1
Definitions unfolded in proof :
bfalse: ff
,
ifthenelse: if b then t else f fi
,
subtract: n - m
,
lt_int: i <z j
,
ycomb: Y
,
itop: Π(op,id) lb ≤ i < ub. E[i]
,
grp_id: e
,
pi1: fst(t)
,
pi2: snd(t)
,
grp_op: *
,
mul_mon_of_rng: r↓xmn
,
mon_itop: Π lb ≤ i < ub. E[i]
,
rng_prod: rng_prod,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
top_wf
Rules used in proof :
because_Cache,
hypothesisEquality,
thin,
isectElimination,
isect_memberEquality,
sqequalHypSubstitution,
extract_by_obid,
sqequalAxiom,
hypothesis,
sqequalRule,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[r,F:Top]. (\mPi{}(r) 0 \mleq{} i < 0. F[i] \msim{} 1)
Date html generated:
2018_05_21-PM-09_33_19
Last ObjectModification:
2017_12_14-PM-07_05_40
Theory : matrices
Home
Index