Nuprl Lemma : decidable__equal_compact_domain

[T,S:Type].  ((∀a,b:S.  Dec(a b ∈ S))  compact-type(T)  (∀f,g:T ⟶ S.  Dec(f g ∈ (T ⟶ S))))


Proof




Definitions occuring in Statement :  compact-type: compact-type(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] compact-type: compact-type(T) deq: EqDecider(T) or: P ∨ Q decidable: Dec(P) not: ¬A false: False exists: x:A. B[x] uiff: uiff(P;Q) uimplies: supposing a eqof: eqof(d)
Lemmas referenced :  deq-exists compact-type_wf all_wf decidable_wf equal_wf equal-wf-T-base bool_wf eqff_to_assert assert_wf bnot_wf eqof_wf not_wf iff_transitivity iff_weakening_uiff assert_of_bnot safe-assert-deq eqtt_to_assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_functionElimination hypothesis rename functionEquality cumulativity sqequalRule lambdaEquality universeEquality dependent_functionElimination applyEquality setElimination functionExtensionality unionElimination inrFormation because_Cache equalitySymmetry hyp_replacement applyLambdaEquality baseClosed equalityTransitivity independent_isectElimination voidElimination independent_pairFormation impliesFunctionality promote_hyp inlFormation

Latex:
\mforall{}[T,S:Type].    ((\mforall{}a,b:S.    Dec(a  =  b))  {}\mRightarrow{}  compact-type(T)  {}\mRightarrow{}  (\mforall{}f,g:T  {}\mrightarrow{}  S.    Dec(f  =  g)))



Date html generated: 2017_10_01-AM-08_29_08
Last ObjectModification: 2017_07_26-PM-04_23_49

Theory : basic


Home Index