Nuprl Lemma : decidable__equal_compact_domain
∀[T,S:Type].  ((∀a,b:S.  Dec(a = b ∈ S)) ⇒ compact-type(T) ⇒ (∀f,g:T ⟶ S.  Dec(f = g ∈ (T ⟶ S))))
Proof
Definitions occuring in Statement : 
compact-type: compact-type(T), 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
compact-type: compact-type(T), 
deq: EqDecider(T), 
or: P ∨ Q, 
decidable: Dec(P), 
not: ¬A, 
false: False, 
exists: ∃x:A. B[x], 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
eqof: eqof(d)
Lemmas referenced : 
deq-exists, 
compact-type_wf, 
all_wf, 
decidable_wf, 
equal_wf, 
equal-wf-T-base, 
bool_wf, 
eqff_to_assert, 
assert_wf, 
bnot_wf, 
eqof_wf, 
not_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
safe-assert-deq, 
eqtt_to_assert
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
hypothesis, 
rename, 
functionEquality, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
universeEquality, 
dependent_functionElimination, 
applyEquality, 
setElimination, 
functionExtensionality, 
unionElimination, 
inrFormation, 
because_Cache, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
baseClosed, 
equalityTransitivity, 
independent_isectElimination, 
voidElimination, 
independent_pairFormation, 
impliesFunctionality, 
promote_hyp, 
inlFormation
Latex:
\mforall{}[T,S:Type].    ((\mforall{}a,b:S.    Dec(a  =  b))  {}\mRightarrow{}  compact-type(T)  {}\mRightarrow{}  (\mforall{}f,g:T  {}\mrightarrow{}  S.    Dec(f  =  g)))
Date html generated:
2017_10_01-AM-08_29_08
Last ObjectModification:
2017_07_26-PM-04_23_49
Theory : basic
Home
Index