Nuprl Lemma : compact-type_wf

[T:Type]. (compact-type(T) ∈ ℙ)


Proof




Definitions occuring in Statement :  compact-type: compact-type(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T compact-type: compact-type(T) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf bool_wf or_wf exists_wf equal_wf bfalse_wf btrue_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality hypothesis lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (compact-type(T)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-01_45_31
Last ObjectModification: 2015_12_27-AM-00_10_20

Theory : basic


Home Index