Nuprl Lemma : compact-type_wf
∀[T:Type]. (compact-type(T) ∈ ℙ)
Proof
Definitions occuring in Statement : 
compact-type: compact-type(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
compact-type: compact-type(T)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
bool_wf, 
or_wf, 
exists_wf, 
equal_wf, 
bfalse_wf, 
btrue_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (compact-type(T)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-01_45_31
Last ObjectModification:
2015_12_27-AM-00_10_20
Theory : basic
Home
Index