Nuprl Lemma : compact-type_wf
∀[T:Type]. (compact-type(T) ∈ ℙ)
Proof
Definitions occuring in Statement :
compact-type: compact-type(T)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
compact-type: compact-type(T)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
all_wf,
bool_wf,
or_wf,
exists_wf,
equal_wf,
bfalse_wf,
btrue_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
functionEquality,
hypothesisEquality,
hypothesis,
lambdaEquality,
applyEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
universeEquality
Latex:
\mforall{}[T:Type]. (compact-type(T) \mmember{} \mBbbP{})
Date html generated:
2016_05_15-PM-01_45_31
Last ObjectModification:
2015_12_27-AM-00_10_20
Theory : basic
Home
Index