Nuprl Lemma : decidable__equal_injection
∀n:ℕ. ∀T:Type.  ((∀x,y:T.  Dec(x = y ∈ T)) 
⇒ (∀f,g:ℕn →⟶ T.  Dec(f = g ∈ ℕn →⟶ T)))
Proof
Definitions occuring in Statement : 
injection: A →⟶ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
injection: A →⟶ B
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
nat_wf, 
equal_wf, 
decidable_wf, 
all_wf, 
injection_wf, 
inject_wf, 
compact-finite, 
decidable__equal_compact_domain, 
int_seg_wf, 
decidable__equal_set
Rules used in proof : 
universeEquality, 
applyEquality, 
functionExtensionality, 
lambdaEquality, 
sqequalRule, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
cumulativity, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
functionEquality, 
thin, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}T:Type.    ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}f,g:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  T.    Dec(f  =  g)))
Date html generated:
2018_05_21-PM-08_17_07
Last ObjectModification:
2017_12_15-PM-00_02_00
Theory : general
Home
Index