Nuprl Lemma : compact-finite

n:ℕcompact-type(ℕn)


Proof




Definitions occuring in Statement :  compact-type: compact-type(T) int_seg: {i..j-} nat: all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  compact-type: compact-type(T) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q decidable: Dec(P) or: P ∨ Q prop: guard: {T} bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff uimplies: supposing a assert: b ifthenelse: if then else fi  iff: ⇐⇒ Q and: P ∧ Q true: True rev_implies:  Q false: False not: ¬A exists: x:A. B[x]
Lemmas referenced :  int_seg_wf bool_wf nat_wf decidable__exists_int_seg equal-wf-T-base decidable__equal_bool bfalse_wf all_wf exists_wf iff_imp_equal_bool btrue_wf false_wf true_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation functionEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis instantiate dependent_functionElimination lambdaEquality applyEquality functionExtensionality baseClosed because_Cache independent_functionElimination unionElimination inlFormation inrFormation equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination independent_pairFormation dependent_pairFormation

Latex:
\mforall{}n:\mBbbN{}.  compact-type(\mBbbN{}n)



Date html generated: 2017_10_01-AM-08_29_02
Last ObjectModification: 2017_07_26-PM-04_23_47

Theory : basic


Home Index