Nuprl Lemma : compact-finite
∀n:ℕ. compact-type(ℕn)
Proof
Definitions occuring in Statement : 
compact-type: compact-type(T)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
compact-type: compact-type(T)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
prop: ℙ
, 
guard: {T}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
uimplies: b supposing a
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
not: ¬A
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
int_seg_wf, 
bool_wf, 
nat_wf, 
decidable__exists_int_seg, 
equal-wf-T-base, 
decidable__equal_bool, 
bfalse_wf, 
all_wf, 
exists_wf, 
iff_imp_equal_bool, 
btrue_wf, 
false_wf, 
true_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
functionEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
instantiate, 
dependent_functionElimination, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
baseClosed, 
because_Cache, 
independent_functionElimination, 
unionElimination, 
inlFormation, 
inrFormation, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
independent_pairFormation, 
dependent_pairFormation
Latex:
\mforall{}n:\mBbbN{}.  compact-type(\mBbbN{}n)
Date html generated:
2017_10_01-AM-08_29_02
Last ObjectModification:
2017_07_26-PM-04_23_47
Theory : basic
Home
Index