Nuprl Lemma : rng_lsum_0

r:Rng. ∀A:Type. ∀as:A List.  {r} x ∈ as. 0 ∈ |r|)


Proof




Definitions occuring in Statement :  rng_lsum: Σ{r} x ∈ as. f[x] list: List all: x:A. B[x] universe: Type equal: t ∈ T rng: Rng rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] rng: Rng cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B true: True iff: ⇐⇒ Q rev_implies:  Q infix_ap: y
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases rng_lsum_nil_lemma rng_zero_wf product_subtype_list colength-cons-not-zero colength_wf_list istype-void istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf rng_lsum_cons_lemma equal_wf rng_car_wf rng_plus_comm iff_weakening_equal rng_plus_wf rng_plus_zero istype-nat list_wf istype-universe rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination axiomEquality functionIsTypeImplies inhabitedIsType unionElimination promote_hyp hypothesis_subsumption productElimination equalityIstype because_Cache dependent_set_memberEquality_alt instantiate equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase imageMemberEquality universeEquality

Latex:
\mforall{}r:Rng.  \mforall{}A:Type.  \mforall{}as:A  List.    (\mSigma{}\{r\}  x  \mmember{}  as.  0  =  0)



Date html generated: 2020_05_20-AM-09_03_37
Last ObjectModification: 2019_12_26-PM-04_07_33

Theory : matrices


Home Index