Nuprl Lemma : rng_lsum-split
∀[A:Type]. ∀[p:A ⟶ 𝔹]. ∀[r:Rng]. ∀[f:A ⟶ |r|]. ∀[as:A List].
  (Σ{r} x ∈ as. f[x] = (Σ{r} x ∈ filter(p;as). f[x] +r Σ{r} x ∈ filter(λa.(¬b(p a));as). f[x]) ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_lsum: Σ{r} x ∈ as. f[x]
, 
filter: filter(P;l)
, 
list: T List
, 
bnot: ¬bb
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_plus: +r
, 
rng_car: |r|
Definitions unfolded in proof : 
false: False
, 
assert: ↑b
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
true: True
, 
infix_ap: x f y
, 
squash: ↓T
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
and: P ∧ Q
, 
top: Top
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
rng_plus_ac_1, 
true_wf, 
squash_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
rng_plus_assoc, 
iff_weakening_equal, 
eqtt_to_assert, 
filter_cons_lemma, 
rng_lsum_cons_lemma, 
rng_zero_wf, 
rng_plus_zero, 
filter_nil_lemma, 
rng_lsum_nil_lemma, 
list_wf, 
bnot_wf, 
set_wf, 
subtype_rel_self, 
l_member_wf, 
bool_wf, 
subtype_rel_dep_function, 
filter_wf5, 
rng_plus_wf, 
infix_ap_wf, 
rng_lsum_wf, 
rng_car_wf, 
equal_wf, 
list_induction
Rules used in proof : 
functionEquality, 
axiomEquality, 
universeEquality, 
instantiate, 
promote_hyp, 
dependent_pairFormation, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
levelHypothesis, 
equalityUniverse, 
imageElimination, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
productElimination, 
equalitySymmetry, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaFormation, 
independent_isectElimination, 
setEquality, 
functionExtensionality, 
applyEquality, 
cumulativity, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
thin, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:Type].  \mforall{}[p:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[r:Rng].  \mforall{}[f:A  {}\mrightarrow{}  |r|].  \mforall{}[as:A  List].
    (\mSigma{}\{r\}  x  \mmember{}  as.  f[x]  =  (\mSigma{}\{r\}  x  \mmember{}  filter(p;as).  f[x]  +r  \mSigma{}\{r\}  x  \mmember{}  filter(\mlambda{}a.(\mneg{}\msubb{}(p  a));as).  f[x]))
Date html generated:
2018_05_21-PM-09_33_01
Last ObjectModification:
2017_12_11-PM-05_31_14
Theory : matrices
Home
Index