Nuprl Lemma : rng_lsum-split

[A:Type]. ∀[p:A ⟶ 𝔹]. ∀[r:Rng]. ∀[f:A ⟶ |r|]. ∀[as:A List].
  {r} x ∈ as. f[x] {r} x ∈ filter(p;as). f[x] +r Σ{r} x ∈ filter(λa.(¬b(p a));as). f[x]) ∈ |r|)


Proof




Definitions occuring in Statement :  rng_lsum: Σ{r} x ∈ as. f[x] filter: filter(P;l) list: List bnot: ¬bb bool: 𝔹 uall: [x:A]. B[x] infix_ap: y so_apply: x[s] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng: Rng rng_plus: +r rng_car: |r|
Definitions unfolded in proof :  false: False assert: b sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] rev_implies:  Q iff: ⇐⇒ Q guard: {T} true: True infix_ap: y squash: T bfalse: ff bnot: ¬bb ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 and: P ∧ Q top: Top implies:  Q all: x:A. B[x] uimplies: supposing a prop: subtype_rel: A ⊆B so_apply: x[s] rng: Rng so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf rng_plus_ac_1 true_wf squash_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert rng_plus_assoc iff_weakening_equal eqtt_to_assert filter_cons_lemma rng_lsum_cons_lemma rng_zero_wf rng_plus_zero filter_nil_lemma rng_lsum_nil_lemma list_wf bnot_wf set_wf subtype_rel_self l_member_wf bool_wf subtype_rel_dep_function filter_wf5 rng_plus_wf infix_ap_wf rng_lsum_wf rng_car_wf equal_wf list_induction
Rules used in proof :  functionEquality axiomEquality universeEquality instantiate promote_hyp dependent_pairFormation baseClosed imageMemberEquality natural_numberEquality levelHypothesis equalityUniverse imageElimination equalityTransitivity equalityElimination unionElimination productElimination equalitySymmetry voidEquality voidElimination isect_memberEquality dependent_functionElimination independent_functionElimination lambdaFormation independent_isectElimination setEquality functionExtensionality applyEquality cumulativity hypothesis because_Cache rename setElimination lambdaEquality sqequalRule hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:Type].  \mforall{}[p:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[r:Rng].  \mforall{}[f:A  {}\mrightarrow{}  |r|].  \mforall{}[as:A  List].
    (\mSigma{}\{r\}  x  \mmember{}  as.  f[x]  =  (\mSigma{}\{r\}  x  \mmember{}  filter(p;as).  f[x]  +r  \mSigma{}\{r\}  x  \mmember{}  filter(\mlambda{}a.(\mneg{}\msubb{}(p  a));as).  f[x]))



Date html generated: 2018_05_21-PM-09_33_01
Last ObjectModification: 2017_12_11-PM-05_31_14

Theory : matrices


Home Index