Nuprl Lemma : no_repeats-strong-subtype
∀[T,S:Type]. ∀[L:S List].  (no_repeats(T;L)) supposing (no_repeats(S;L) and strong-subtype(S;T))
Proof
Definitions occuring in Statement : 
no_repeats: no_repeats(T;l)
, 
list: T List
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
no_repeats: no_repeats(T;l)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
label: ...$L... t
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
strong-subtype-implies, 
select_wf, 
subtype_rel_list, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
equal_wf, 
not_wf, 
nat_wf, 
less_than_wf, 
length_wf, 
no_repeats_witness, 
no_repeats_wf, 
strong-subtype_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
lambdaFormation, 
independent_functionElimination, 
extract_by_obid, 
dependent_functionElimination, 
cumulativity, 
applyEquality, 
productElimination, 
sqequalRule, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
addLevel, 
levelHypothesis, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T,S:Type].  \mforall{}[L:S  List].    (no\_repeats(T;L))  supposing  (no\_repeats(S;L)  and  strong-subtype(S;T))
Date html generated:
2017_04_17-AM-07_29_06
Last ObjectModification:
2017_02_27-PM-04_07_40
Theory : list_1
Home
Index