Nuprl Lemma : no_repeats-strong-subtype

[T,S:Type]. ∀[L:S List].  (no_repeats(T;L)) supposing (no_repeats(S;L) and strong-subtype(S;T))


Proof




Definitions occuring in Statement :  no_repeats: no_repeats(T;l) list: List strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a no_repeats: no_repeats(T;l) not: ¬A implies:  Q guard: {T} label: ...$L... t all: x:A. B[x] subtype_rel: A ⊆B strong-subtype: strong-subtype(A;B) cand: c∧ B nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop:
Lemmas referenced :  strong-subtype-implies select_wf subtype_rel_list nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf equal_wf not_wf nat_wf less_than_wf length_wf no_repeats_witness no_repeats_wf strong-subtype_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis isectElimination thin hypothesisEquality independent_isectElimination lambdaFormation independent_functionElimination extract_by_obid dependent_functionElimination cumulativity applyEquality productElimination sqequalRule setElimination rename because_Cache natural_numberEquality unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll addLevel levelHypothesis equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T,S:Type].  \mforall{}[L:S  List].    (no\_repeats(T;L))  supposing  (no\_repeats(S;L)  and  strong-subtype(S;T))



Date html generated: 2017_04_17-AM-07_29_06
Last ObjectModification: 2017_02_27-PM-04_07_40

Theory : list_1


Home Index