Nuprl Lemma : mul_mon_of_rng_wf

[r:RngSig]. (r↓xmn ∈ GrpSig)


Proof




Definitions occuring in Statement :  mul_mon_of_rng: r↓xmn rng_sig: RngSig grp_sig: GrpSig uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  mul_mon_of_rng: r↓xmn grp_sig: GrpSig uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  rng_car_wf rng_eq_wf rng_le_wf rng_times_wf rng_one_wf bool_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut dependent_pairEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache lambdaEquality functionEquality productEquality cumulativity axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[r:RngSig].  (r\mdownarrow{}xmn  \mmember{}  GrpSig)



Date html generated: 2016_05_15-PM-00_21_01
Last ObjectModification: 2015_12_27-AM-00_02_35

Theory : rings_1


Home Index