Nuprl Lemma : permutations-list_wf

[n:ℕ]. (permutations-list(n) ∈ {P:ℕn →⟶ ℕList| no_repeats(ℕn →⟶ ℕn;P) ∧ (∀f:ℕn →⟶ ℕn. (f ∈ P))} )


Proof




Definitions occuring in Statement :  permutations-list: permutations-list(n) injection: A →⟶ B no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  so_apply: x[s] and: P ∧ Q prop: nat: so_lambda: λ2x.t[x] all: x:A. B[x] subtype_rel: A ⊆B permutations-list: permutations-list(n) member: t ∈ T uall: [x:A]. B[x] sq_exists: x:A [B[x]]
Lemmas referenced :  l_member_wf no_repeats_wf int_seg_wf injection_wf list_wf sq_exists_wf nat_wf all_wf list-permutations
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality productEquality because_Cache rename setElimination natural_numberEquality isectElimination hypothesisEquality sqequalHypSubstitution lambdaEquality hypothesis extract_by_obid instantiate thin applyEquality cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}]
    (permutations-list(n)  \mmember{}  \{P:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n  List|  no\_repeats(\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n;P)  \mwedge{}  (\mforall{}f:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n.  (f  \mmember{}  P))\}  )



Date html generated: 2018_05_21-PM-08_21_27
Last ObjectModification: 2017_12_11-AM-10_34_19

Theory : general


Home Index