Nuprl Lemma : list-permutations

n:ℕ(∃P:ℕn →⟶ ℕList [(no_repeats(ℕn →⟶ ℕn;P) ∧ (∀f:ℕn →⟶ ℕn. (f ∈ P)))])


Proof




Definitions occuring in Statement :  injection: A →⟶ B no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List int_seg: {i..j-} nat: all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: cand: c∧ B sq_exists: x:A [B[x]] exists: x:A. B[x] implies:  Q and: P ∧ Q iff: ⇐⇒ Q subtype_rel: A ⊆B nat: uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  nat_wf l_member_wf all_wf no_repeats_wf nat_plus_subtype_nat fact_wf int_seg_wf injection_wf equipollent-iff-list equipollent-factorial
Rules used in proof :  lambdaEquality productEquality independent_pairFormation dependent_set_memberEquality independent_functionElimination productElimination sqequalRule applyEquality because_Cache rename setElimination natural_numberEquality isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}n:\mBbbN{}.  (\mexists{}P:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n  List  [(no\_repeats(\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n;P)  \mwedge{}  (\mforall{}f:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n.  (f  \mmember{}  P)))])



Date html generated: 2018_05_21-PM-08_21_04
Last ObjectModification: 2017_12_11-AM-10_31_44

Theory : general


Home Index