Nuprl Lemma : list-permutations
∀n:ℕ. (∃P:ℕn →⟶ ℕn List [(no_repeats(ℕn →⟶ ℕn;P) ∧ (∀f:ℕn →⟶ ℕn. (f ∈ P)))])
Proof
Definitions occuring in Statement : 
injection: A →⟶ B
, 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
cand: A c∧ B
, 
sq_exists: ∃x:A [B[x]]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
nat_wf, 
l_member_wf, 
all_wf, 
no_repeats_wf, 
nat_plus_subtype_nat, 
fact_wf, 
int_seg_wf, 
injection_wf, 
equipollent-iff-list, 
equipollent-factorial
Rules used in proof : 
lambdaEquality, 
productEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
applyEquality, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
isectElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}n:\mBbbN{}.  (\mexists{}P:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n  List  [(no\_repeats(\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n;P)  \mwedge{}  (\mforall{}f:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n.  (f  \mmember{}  P)))])
Date html generated:
2018_05_21-PM-08_21_04
Last ObjectModification:
2017_12_11-AM-10_31_44
Theory : general
Home
Index