Nuprl Lemma : equipollent-factorial
∀n:ℕ. ℕn →⟶ ℕn ~ ℕ(n)!
Proof
Definitions occuring in Statement : 
injection: A →⟶ B
, 
fact: (n)!
, 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
top: Top
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
guard: {T}
, 
sq_type: SQType(T)
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
itermSubtract_wf, 
itermConstant_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
fact0_redex_lemma, 
intformand_wf, 
itermMultiply_wf, 
int_formula_prop_and_lemma, 
int_term_value_mul_lemma, 
combinations-formula, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
ext-eq_weakening, 
equipollent_weakening_ext-eq, 
count-combinations, 
injections-combinations, 
equipollent_transitivity, 
equipollent_functionality_wrt_equipollent, 
nat_wf, 
injection_wf, 
int_seg_wf, 
combinations_wf_int, 
fact_wf, 
nat_plus_wf, 
combination_wf, 
equipollent-nsub, 
combinations_wf, 
nat_plus_subtype_nat
Rules used in proof : 
independent_functionElimination, 
productElimination, 
dependent_functionElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_isectElimination, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
independent_pairFormation, 
equalitySymmetry, 
equalityTransitivity, 
instantiate
Latex:
\mforall{}n:\mBbbN{}.  \mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n  \msim{}  \mBbbN{}(n)!
Date html generated:
2018_05_21-PM-08_20_53
Last ObjectModification:
2017_12_07-PM-06_15_21
Theory : general
Home
Index