Nuprl Lemma : equipollent-factorial

n:ℕ. ℕn →⟶ ℕ~ ℕ(n)!


Proof




Definitions occuring in Statement :  injection: A →⟶ B fact: (n)! equipollent: B int_seg: {i..j-} nat: all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  implies:  Q and: P ∧ Q iff: ⇐⇒ Q nat_plus: + subtype_rel: A ⊆B nat: uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a rev_implies:  Q prop: top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  guard: {T} sq_type: SQType(T)
Lemmas referenced :  subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf itermSubtract_wf itermConstant_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_constant_lemma fact0_redex_lemma intformand_wf itermMultiply_wf int_formula_prop_and_lemma int_term_value_mul_lemma combinations-formula nat_properties decidable__le satisfiable-full-omega-tt intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf ext-eq_weakening equipollent_weakening_ext-eq count-combinations injections-combinations equipollent_transitivity equipollent_functionality_wrt_equipollent nat_wf injection_wf int_seg_wf combinations_wf_int fact_wf nat_plus_wf combination_wf equipollent-nsub combinations_wf nat_plus_subtype_nat
Rules used in proof :  independent_functionElimination productElimination dependent_functionElimination because_Cache sqequalRule lambdaEquality applyEquality hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution hypothesis lemma_by_obid cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_isectElimination computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation unionElimination independent_pairFormation equalitySymmetry equalityTransitivity instantiate

Latex:
\mforall{}n:\mBbbN{}.  \mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n  \msim{}  \mBbbN{}(n)!



Date html generated: 2018_05_21-PM-08_20_53
Last ObjectModification: 2017_12_07-PM-06_15_21

Theory : general


Home Index