Nuprl Lemma : equipollent_transitivity
∀[A,B,C:Type].  (A ~ B ⇒ B ~ C ⇒ A ~ C)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
equipollent: A ~ B, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
biject: Bij(A;B;f), 
and: P ∧ Q, 
cand: A c∧ B, 
surject: Surj(A;B;f), 
inject: Inj(A;B;f), 
all: ∀x:A. B[x], 
guard: {T}, 
compose: f o g, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
exists_wf, 
biject_wf, 
compose_wf, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
universeEquality, 
rename, 
dependent_pairFormation, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}[A,B,C:Type].    (A  \msim{}  B  {}\mRightarrow{}  B  \msim{}  C  {}\mRightarrow{}  A  \msim{}  C)
Date html generated:
2017_04_17-AM-09_30_53
Last ObjectModification:
2017_02_27-PM-05_31_06
Theory : equipollence!!cardinality!
Home
Index