Nuprl Lemma : combinations_wf
∀[n,m:ℕ].  (C(n;m) ∈ ℕ)
Proof
Definitions occuring in Statement : 
combinations: C(n;m), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
combinations: C(n;m), 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ
Lemmas referenced : 
combinations_aux_wf, 
false_wf, 
le_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n,m:\mBbbN{}].    (C(n;m)  \mmember{}  \mBbbN{})
Date html generated:
2016_05_15-PM-05_58_32
Last ObjectModification:
2015_12_27-PM-00_22_16
Theory : general
Home
Index