Nuprl Lemma : combinations_wf

[n,m:ℕ].  (C(n;m) ∈ ℕ)


Proof




Definitions occuring in Statement :  combinations: C(n;m) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T combinations: C(n;m) nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop:
Lemmas referenced :  combinations_aux_wf false_wf le_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[n,m:\mBbbN{}].    (C(n;m)  \mmember{}  \mBbbN{})



Date html generated: 2016_05_15-PM-05_58_32
Last ObjectModification: 2015_12_27-PM-00_22_16

Theory : general


Home Index