Nuprl Lemma : combinations_aux_wf

[n,b,m:ℕ].  (combinations_aux(b;n;m) ∈ ℕ)


Proof




Definitions occuring in Statement :  combinations_aux: combinations_aux(b;n;m) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  or: P ∨ Q decidable: Dec(P) btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) combinations_aux: combinations_aux(b;n;m) prop: and: P ∧ Q top: Top all: x:A. B[x] not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x] rev_implies:  Q iff: ⇐⇒ Q bfalse: ff uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 guard: {T} sq_type: SQType(T) has-value: (a)↓ subtype_rel: A ⊆B less_than: a < b squash: T cand: c∧ B less_than': less_than'(a;b) le: A ≤ B
Lemmas referenced :  int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le nat_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties equal_wf assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert_of_eq_int eqtt_to_assert uiff_transitivity subtype_base_sq decidable__equal_int value-type-has-value not_wf bnot_wf assert_wf int_subtype_base equal-wf-base bool_wf eq_int_wf int-value-type full-omega-unsat istype-int istype-less_than subtract-1-ge-0 istype-assert istype-void intformeq_wf int_formula_prop_eq_lemma add-commutes zero-mul istype-le mul-zero le_wf mul_bounds_1a
Rules used in proof :  unionElimination sqleReflexivity callbyvalueReduce equalitySymmetry equalityTransitivity axiomEquality independent_functionElimination computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution because_Cache impliesFunctionality productElimination equalityElimination cumulativity instantiate applyEquality baseClosed closedConclusion baseApply lambdaFormation_alt approximateComputation dependent_pairFormation_alt lambdaEquality_alt Error :memTop,  universeIsType functionIsTypeImplies inhabitedIsType equalityIstype sqequalBase functionIsType multiplyEquality addEquality minusEquality imageElimination hyp_replacement dependent_set_memberEquality_alt productIsType applyLambdaEquality dependent_set_memberEquality

Latex:
\mforall{}[n,b,m:\mBbbN{}].    (combinations\_aux(b;n;m)  \mmember{}  \mBbbN{})



Date html generated: 2020_05_20-AM-08_12_50
Last ObjectModification: 2020_02_06-PM-01_37_16

Theory : general


Home Index