Nuprl Lemma : injections-combinations

n:ℕ. ∀[T:Type]. ℕn →⟶ Combination(n;T)


Proof




Definitions occuring in Statement :  injection: A →⟶ B combination: Combination(n;T) equipollent: B int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T injection: A →⟶ B combination: Combination(n;T) and: P ∧ Q cand: c∧ B no_repeats: no_repeats(T;l) uimplies: supposing a not: ¬A implies:  Q false: False subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] top: Top prop: int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] true: True squash: T guard: {T} iff: ⇐⇒ Q inject: Inj(A;B;f) le: A ≤ B less_than': less_than'(a;b) equipollent: B biject: Bij(A;B;f) respects-equality: respects-equality(S;T) surject: Surj(A;B;f) rev_implies:  Q
Lemmas referenced :  istype-universe istype-nat mklist_wf set_subtype_base le_wf istype-int int_subtype_base istype-void istype-less_than length_wf mklist_length no_repeats_wf length_wf_nat injection_wf int_seg_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le select_wf equal_wf squash_wf true_wf mklist_select subtype_rel_self iff_weakening_equal int_seg_subtype_nat istype-false biject_wf combination_wf respects-equality-set-trivial list_wf equal-wf-base inject_wf int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma less_than_wf intformeq_wf int_formula_prop_eq_lemma decidable__equal_int_seg lelt_wf list_extensionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination universeEquality hypothesis lambdaEquality_alt setElimination rename dependent_set_memberEquality_alt hypothesisEquality sqequalRule dependent_functionElimination because_Cache functionIsTypeImplies inhabitedIsType functionIsType equalityIstype applyEquality intEquality closedConclusion natural_numberEquality independent_isectElimination sqequalBase equalitySymmetry isect_memberEquality_alt isectIsTypeImplies voidElimination independent_pairFormation productIsType universeIsType unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality imageElimination equalityTransitivity imageMemberEquality baseClosed productElimination productEquality functionExtensionality_alt applyLambdaEquality hyp_replacement

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}[T:Type].  \mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  T  \msim{}  Combination(n;T)



Date html generated: 2019_10_15-AM-11_20_32
Last ObjectModification: 2018_11_27-AM-00_31_20

Theory : general


Home Index